
Planning in MDPs
 

Sham Kakade and Kianté Brantley 
CS 2824: Foundations of Reinforcement Learning

Announcements

- The first reading assignment is out, and it is due on Feb 4th at 23:59

- Office Hours:
- Tuesday 3-4 PM (Lukas)

- Wednesday 1-2 PM (Jay)

- Thursday 2:15-3:15 PM (Alex)

Recap: Value iteration

Qt+1 = 𝒯Qt

Recap: Value iteration

Qt+1 = 𝒯Qt

Theorem: Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

πt : πt(s) = arg max
a

Qt(s, a)

Recap: Value iteration

Qt+1 = 𝒯Qt

Theorem: Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

πt : πt(s) = arg max
a

Qt(s, a)

Q: when will be the optimal policy?πt

Outline

1. Policy Iteration

2. Computation complexity of VI and PI

3. Linear Programming formulation

Policy Iteration Algorithm:

1. Initialization: π0 : S ↦ A

Policy Iteration Algorithm:

1. Initialization: π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

Policy Iteration Algorithm:

1. Initialization: π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s

Policy Iteration Algorithm:

1. Initialization: π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s

Policy Iteration Algorithm:

1. Initialization: π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s

Closed-form for PE

(see 1.1.3 in Monograph)

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Lemma: Monotonic improvement Qπt+1(s, a) ≥ Qπt(s, a), ∀s, a

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Qπt+1(s, a) − Qπt(s, a) = γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]

Lemma: Monotonic improvement Qπt+1(s, a) ≥ Qπt(s, a), ∀s, a

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Qπt+1(s, a) − Qπt(s, a) = γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]

Lemma: Monotonic improvement Qπt+1(s, a) ≥ Qπt(s, a), ∀s, a

= γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′)) + Qπt(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Qπt+1(s, a) − Qπt(s, a) = γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]

Lemma: Monotonic improvement Qπt+1(s, a) ≥ Qπt(s, a), ∀s, a

= γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′)) + Qπt(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]
≥ γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′))]

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Qπt+1(s, a) − Qπt(s, a) = γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]

Lemma: Monotonic improvement Qπt+1(s, a) ≥ Qπt(s, a), ∀s, a

= γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′)) + Qπt(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]
≥ γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′))]≥ …, ≥ − γ∞/(1 − γ) = 0

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Qπt+1(s, a) − Qπt(s, a) = γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]

Lemma: Monotonic improvement Qπt+1(s, a) ≥ Qπt(s, a), ∀s, a

= γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′)) + Qπt(s′ , πt+1(s′)) − Qπt(s′ , πt(s′))]
≥ γ𝔼s′ ∼P(s,a) [Qπt+1(s′ , πt+1(s′)) − Qπt(s′ , πt+1(s′))]≥ …, ≥ − γ∞/(1 − γ) = 0

Vπt+1(s) ≥ Vπt(s), ∀s

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

Theorem: Convergence ∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

V⋆(s) − Vπt+1(s) = max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt+1(s′)]

Theorem: Convergence ∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

V⋆(s) − Vπt+1(s) = max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt+1(s′)]

Theorem: Convergence ∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt(s′)]

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

V⋆(s) − Vπt+1(s) = max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt+1(s′)]

Theorem: Convergence ∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt(s′)]

= max
a

(r(s, a) + 𝔼s′ ∼P(s,a)γV⋆(s′)) − max
a

(r(s, a) + γ𝔼s′ ∼P(s,a)Vπt(s′))

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

V⋆(s) − Vπt+1(s) = max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt+1(s′)]

Theorem: Convergence ∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt(s′)]

= max
a

(r(s, a) + 𝔼s′ ∼P(s,a)γV⋆(s′)) − max
a

(r(s, a) + γ𝔼s′ ∼P(s,a)Vπt(s′))

≤ max
a (r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′) − (r(s, a) + γ𝔼s′ ∼P(s,a)Vπt(s′)))

Analysis of Policy Iteration
Recall: Policy Improvement πt+1(s) = arg max

a
Qπt(s, a), ∀s

V⋆(s) − Vπt+1(s) = max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt+1(s′)]

Theorem: Convergence ∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] − [r(s, πt+1(s)) + γ𝔼s′ ∼P(s,πt+1(s))Vπt(s′)]

= max
a

(r(s, a) + 𝔼s′ ∼P(s,a)γV⋆(s′)) − max
a

(r(s, a) + γ𝔼s′ ∼P(s,a)Vπt(s′))

≤ max
a (r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′) − (r(s, a) + γ𝔼s′ ∼P(s,a)Vπt(s′)))

≤ γ∥V⋆ − Vπt∥∞

Analysis of Policy Iteration

Q: what happens when and are exactly the same?πt+1 πt

Show that is an optimal policy πt π⋆

Q: does this imply that the algorithm will terminate?

Outline

1. Policy Iteration

2. Computation complexity of VI and PI

3. Linear Programming formulation

Given an MDP can we exactly compute (or find)
in time polynomial wrt

ℳ = (S, A, P, r, γ) Q⋆ π⋆

S, A,1/(1 − γ)?

Computation complexity of VI and PI

Given an MDP can we exactly compute (or find)
in time polynomial wrt

ℳ = (S, A, P, r, γ) Q⋆ π⋆

S, A,1/(1 − γ)?

No for VI (i.e.,gap between second and best)

Computation complexity of VI and PI

Given an MDP can we exactly compute (or find)
in time polynomial wrt

ℳ = (S, A, P, r, γ) Q⋆ π⋆

S, A,1/(1 − γ)?

No for VI (i.e.,gap between second and best)

Yes for policy iteration:

(S3 + S2A) ⋅ min AS

S
,

S2A log S2

1 − γ

1 − γ

Computation complexity of VI and PI

Given an MDP can we exactly compute (or find)
in time polynomial wrt

ℳ = (S, A, P, r, γ) Q⋆ π⋆

S, A,1/(1 − γ)?

No for VI (i.e.,gap between second and best)

Yes for policy iteration:

(S3 + S2A) ⋅ min AS

S
,

S2A log S2

1 − γ

1 − γ

Computation complexity of VI and PI

What about algs?poly(S, A)

Outline

1. Policy Iteration

2. Computation complexity of VI and PI

3. Linear Programming formulation

The primal linear programming

V(s) = max
a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a) [V(s)]}, ∀s

Recall the Bellman consistency:

The primal linear programming

V(s) = max
a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a) [V(s)]}, ∀s

Recall the Bellman consistency:

We can re-write this as a linear program

The primal linear programming

V(s) = max
a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a) [V(s)]}, ∀s

Recall the Bellman consistency:

We can re-write this as a linear program

min ∑
s

μ(s)V(s)

s.t. V(s) ≥ max
a

[r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V(s′)] ∀s ∈ S

The primal linear programming

V(s) = max
a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a) [V(s)]}, ∀s

Recall the Bellman consistency:

We can re-write this as a linear program

min ∑
s

μ(s)V(s)

s.t. V(s) ≥ max
a

[r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V(s′)] ∀s ∈ S
(Proof in HW1)

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality
Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′ ∼P(s,π⋆(s))V⋆(s′)

Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′ ∼P(s,π⋆(s))V⋆(s′)

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] = r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s))V⋆(s′)

Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′ ∼P(s,π⋆(s))V⋆(s′)

= r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , π⋆(s′)) + γ𝔼s′ ′ ∼P(s′ ,π⋆(s′))V⋆(s′ ′)]
≤ max

a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] = r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s))V⋆(s′)

Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′ ∼P(s,π⋆(s))V⋆(s′)

= r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , π⋆(s′)) + γ𝔼s′ ′ ∼P(s′ ,π⋆(s′))V⋆(s′ ′)]
≤ r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , ̂π (s′)) + γ𝔼s′ ′ ∼P(s′ , ̂π (s′))V⋆(s′ ′)]

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] = r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s))V⋆(s′)

Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′ ∼P(s,π⋆(s))V⋆(s′)

= r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , π⋆(s′)) + γ𝔼s′ ′ ∼P(s′ ,π⋆(s′))V⋆(s′ ′)]
≤ r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , ̂π (s′)) + γ𝔼s′ ′ ∼P(s′ , ̂π (s′))V⋆(s′ ′)]
≤ r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , ̂π (s′)) + γ𝔼s′ ′ ∼P(s′ , ̂π (s′)) [r(s′ ′ , ̂π (s′ ′)) + γ𝔼s′ ′ ′ ∼P(s′ ′ , ̂π (s′ ′))V⋆(s′ ′ ′)]]

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] = r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s))V⋆(s′)

Proof of Bellman Optimality

V⋆(s) = max
a [r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V⋆(s′)], ∀s

Theorem 1: Bellman Optimality

Denote we will prove ̂π (s) := arg max
a

Q⋆(s, a), V ̂π (s) = V⋆(s), ∀s

V⋆(s) = r(s, π⋆(s)) + γ𝔼s′ ∼P(s,π⋆(s))V⋆(s′)

= r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , π⋆(s′)) + γ𝔼s′ ′ ∼P(s′ ,π⋆(s′))V⋆(s′ ′)]
≤ r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , ̂π (s′)) + γ𝔼s′ ′ ∼P(s′ , ̂π (s′))V⋆(s′ ′)]
≤ r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s)) [r(s′ , ̂π (s′)) + γ𝔼s′ ′ ∼P(s′ , ̂π (s′)) [r(s′ ′ , ̂π (s′ ′)) + γ𝔼s′ ′ ′ ∼P(s′ ′ , ̂π (s′ ′))V⋆(s′ ′ ′)]]
≤ 𝔼 [r(s, ̂π (s)) + γr(s′ , ̂π (s′)) + …] = V ̂π (s)

≤ max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V⋆(s′)] = r(s, ̂π (s)) + γ𝔼s′ ∼P(s, ̂π (s))V⋆(s′)

Proof of Bellman Optimality

The primal linear programming

min ∑
s

μ(s)V(s)

s.t. V(s) ≥ max
a

[r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V(s′)] ∀s, a ∈ S × A

min ∑
s

μ(s)V(s)

s.t. V(s) ≥ r(s, a) + γ𝔼s′ ∼P(⋅|s,a)V(s′) ∀s, a ∈ S × A

Convert the constriant to linear

LP Runtime

[Ye, ’05]: there is an interior point algorithm (CIPA)  
which is (“nearly”) strongly polynomial, i.e., no poly dependence on  1/(1 − γ)

S4A4 ln (S
1 − γ)

What about the Dual LP?

What about the Dual LP?

• Let us now consider the dual LP.

• It is also very helpful conceptually.

• In some cases, it also provides a reasonable algorithmic approach  
 

What about the Dual LP?

• Let us now consider the dual LP.

• It is also very helpful conceptually.

• In some cases, it also provides a reasonable algorithmic approach  
 

• Let us start by understanding the dual variables

State action occupancy measure

: probability of visiting at time step , starting at ℙh(s, a; s0, π) π (s, a) h ∈ ℕ s0

State action occupancy measure

: probability of visiting at time step , starting at ℙh(s, a; s0, π) π (s, a) h ∈ ℕ s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙh(s, a; s0, π)

State action occupancy measure

: probability of visiting at time step , starting at ℙh(s, a; s0, π) π (s, a) h ∈ ℕ s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙh(s, a; s0, π)

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)

A Bellman equation like property for dπ
s0

(s, a)

∑
a

dπ
μ(s, a) = (1 − γ)μ(s) + γ∑̄

s,ā
P(s | s̄, ā)dπ

μ(s̄, ā)

Proof:

A Bellman equation like property for dπ
s0

(s)

The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

Kμ := {d | d ≥ 0 and

∑
a

d(s, a) = (1 − γ)μ(s) + γ∑
s′ ,a′

P(s |s′ , a′)d(s′ , a′)}

The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

Kμ := {d | d ≥ 0 and

∑
a

d(s, a) = (1 − γ)μ(s) + γ∑
s′ ,a′

P(s |s′ , a′)d(s′ , a′)}
• This set precisely characterizes all state-action visitation distributions:

The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

Kμ := {d | d ≥ 0 and

∑
a

d(s, a) = (1 − γ)μ(s) + γ∑
s′ ,a′

P(s |s′ , a′)d(s′ , a′)}
• This set precisely characterizes all state-action visitation distributions:
Lemma: if and only if there exists a (possibly randomized) policy  
s.t.

d ∈ Kμ π
dπ

μ = d

The Dual LP

• One can verify that this is the dual of the primal LP.

max ∑
s,a

d(s, a)r(s, a)

s.t. d ∈ Kμ

Summary

Notations: Value / Q functions, state-action occupant measures,

Bellman equation / optimality

Planning algorithms: VI, PI, LP (primal and dual)

