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Announcements

- The first reading assignment is out, and it is due on Feb 4th at 23:59


- Office Hours: 
- Tuesday 3-4 PM (Lukas)

- Wednesday 1-2 PM (Jay)

- Thursday 2:15-3:15 PM (Alex)
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Theorem: Vπt(s) ≥ V⋆(s) − 2γt

1 − γ
∥Q0 − Q⋆∥∞∀s ∈ S

πt : πt(s) = arg max
a

Qt(s, a)

Q: when will  be the optimal policy?πt
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1. Policy Iteration

2. Computation complexity of VI and PI

3. Linear Programming formulation



Policy Iteration Algorithm:

1. Initialization:  π0 : S ↦ A



Policy Iteration Algorithm:

1. Initialization:  π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a



Policy Iteration Algorithm:

1. Initialization:  π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s



Policy Iteration Algorithm:

1. Initialization:  π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s



Policy Iteration Algorithm:

1. Initialization:  π0 : S ↦ A

2. Policy Evaluation: Qπt(s, a), ∀s, a

3. Policy Improvement πt+1(s) = arg max
a

Qπt(s, a), ∀s

Closed-form for PE 

(see 1.1.3 in Monograph)
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Q: what happens when  and  are exactly the same?πt+1 πt

Show that  is an optimal policy πt π⋆
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LP Runtime

[Ye, ’05]: there is an interior point algorithm (CIPA)  
which is (“nearly”) strongly polynomial, i.e., no poly dependence on  1/(1 − γ)

S4A4 ln ( S
1 − γ )
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• Let us now consider the dual LP.

• It is also very helpful conceptually.

• In some cases, it also provides a reasonable algorithmic approach  
 

• Let us start by understanding the dual variables 
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State action occupancy measure

: probability of  visiting  at time step , starting at ℙh(s, a; s0, π) π (s, a) h ∈ ℕ s0

dπ
s0

(s, a) = (1 − γ)
∞

∑
h=0

γhℙh(s, a; s0, π)

Vπ(s0) = 1
1 − γ ∑

s,a
dπ

s0
(s, a)r(s, a)



A Bellman equation like property for dπ
s0

(s, a)

∑
a

dπ
μ(s, a) = (1 − γ)μ(s) + γ∑̄

s,ā
P(s | s̄, ā)dπ

μ(s̄, ā)

Proof:
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The “State-Action” Polytope

• Let us define the state-action polytope K as follows:

 

Kμ := {d | d ≥ 0  and 

∑
a

d(s, a) = (1 − γ)μ(s) + γ∑
s′ ,a′ 

P(s |s′ , a′ )d(s′ , a′ )}
• This set precisely characterizes all state-action visitation distributions:
Lemma:  if and only if there exists a (possibly randomized) policy   
s.t. 

d ∈ Kμ π
dπ

μ = d



The Dual LP




• One can verify that this is the dual of the primal LP.


max ∑
s,a

d(s, a)r(s, a)

s.t.  d ∈ Kμ



Summary

Notations: Value / Q functions, state-action occupant measures, 

Bellman equation / optimality

Planning algorithms: VI, PI, LP (primal and dual)


