Introduction and Basics of
Markov Decision Process

CS 2824: Foundations of Reinforcement Learning



The very successful stories of ML are based on RL...
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RL in Real World: Coding Assistant

this code is not working like i expect — how do i fix it?

resultWorkerErr :=
resultWorkerErr

resultWorkerErr <- b

<-resultWorkerErr

multierror err. <-resultWorkerErr

It's difficult to say what's wrong with the code without more context. Can you provide
more information about what the code is supposed to do and what isn't working as
expected? Also, is this the entire code or just a part of it?

just part of it — the error never surfaces. I think there is something wrong with
the channel

It's difficult to say without more information about what the code is supposed to do
and what’s happening when it's executed. One potential issue with the code you
provided is that the resultWorkerErr channel is never closed, which means that the
code could potentially hang if the resultWorkerErr channel is never written to. This

Training Language models
using RL, e.g., chatGPT
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Mon and Tue; Otherwise, I'll be back on 11/29.
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research meeting around lunch time. Tuesday | have am

teaching a course that is roughly around lunch time. Maybe USing RL, e_g . ChatG PT

lets reconnect wehn you are back 11/29.

Next Monday and Tuesday are not great for me. On
Mondays, | have lab meetings and a research meeting
around lunchtime. On Tuesday, | will be teaching a course
during roughly the same time. Perhaps we can reconnect

when you return on 11/29.

Monday and Tuesday are typically not great for me.-On

Meondays, | have lab-meetings-and-; research meetings.-On
Tuesday,twillbeteaehing and teach a course during
roughly-the-same-time around lunchtime. Perhaps we can

reconnect when you return on 11/29.




RL in Real World:

Genearting creative images that would never appeared in real world




Logistics



Course staff introductions

* Instructors: : Kianté Brantley and Sham Kakade
* TFs: Lukas Fesser, Jaeyeon Kim, and Alex Meterez

» We will make minor updates on the HW and post it on Ed.

* This should be a review;
you should be familiar with the material to take the course.



Course Overview

All policies are stated on the course website:
https://harvard-cs2824-s26.github.io/

» We want u to obtain fundamental knowledge of RL.
- Grades: Participation; Reading; HWO0 +HW1-HW3; Project

» Readings: Readings will be assigned. It is important you do these and turn them
INn on time. They help with learning the material.

- HWs: HW Is designed to target to many of the concepts in the class.

* Project: 3 people per project. It must be theoretical (fine to also have an
empirical component).

* Bonus (5%):



Enrollment/Auditing

* Priority will be given to PhD students + having appropriate pre-requisites.

* You are welcome to audit/sit in on the course, though please give seats to the
enrolled students (in case it is tight).

* Please hit “enroll” if you have been accepted in the course
(SO0 we have an accurate count to let more people in)

» Please drop if you know you will not take the course
(so we can let others in)

* Please see HWO.

10



Other Points

. It IS expected to attend and do the readings.

- Communication: please use Ed to contact us

- Late policy (basically): you have 96 cumulative hours of late time.
» Please use this to plan for unforeseen circumstances.

11



Course Overview

* Fundamentals:
» Sample Complexity
» Tabular exploration (“UCB-VI”)
» Generalization:
* RL in “large” (of inf dim) state spaces.

» Upper bounds: What conditions lets us have guaranteed success.
(e.g. Bellman rank)

» Lower bounds: Why are getting such conditions so difficult in RL?
(say in comparison to SL)

» (Direct) Policy Optimization:
* Policy gradient methods are what work in practice. (why?)
» theory/practice of them

» Other topics: RLHF/LLMs, imitation learning.

12



Basics of Markov Decision Processes



Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Supervised Learning

Given i.i.d examples at training:
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Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)
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Markov Decision Process

Learning
Agent

Environment

a ~ 7(s)

Policy: determine action based on state
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Send reward and next state from a
Markovian transition dynamics

r(s,a),s’ ~ P(-|s,a)

SO ~ //t(), Clo ~ ﬂ(So), r(), Sl ~ P(So, ao), Cll ~ ﬂ(Sl), 7‘1...
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Policy 7: S — A(A)



Infinite horizon Discounted MDP

P:SXA— A(S),

Value function V7(s) =

% — {S9A9P9 r’ll/tO’}/}

r:SxA—-10,1], ye][0,1)

Policy z: S — A(A)

= Z y'r(sy, ay)
h=0

S = 5,4y ~ ﬂ(Sh),Sh_l_l ~ P( ) |Sh9ah)



Infinite horizon Discounted MDP

%: {S,A,P,F,/Jlo,}/}
P:SXA- AWN), r:S5xA-|[0,1], ye€]0,1)

Policy 7: S — A(A)

Value function V#(s) = E lz y'r(s, a,) | sy = s, ay, ~ 7w(s;), sj1 ~ PC+ | ), ah)]
h=0

Q function O%(s,a) = E lz yhr(sh, a,) | (g, ag) = (s, a), aj, ~ 7(sy), Sp1 ~ P(C- |5, ah)]
h=0



VZi(s)

Bellman Equation:

S sy
h=0

So = S, ay ~ 7(sy), .1 ~ P(- |5, ap)



VZi(s)

Bellman Equation:

Vﬂ(S) — = gon(s) lF(S, Cl) + vy

_ lz 7h’”(5h, ay) | So = S, @y, ~ 7(Sp), Spyq ~ PC- |5, ah)]
h=0

_S’NP('\SaCZ)Vﬂ(S,)]



Bellman Equation:

Vi(s) = [ lz yhr(sh, a,) | so =S, a, ~ 7(sy), .1 ~ P(- |5y, ah)]
h=0

VA(S) = Bty 105 @) + VB p g VS

O”"(s,a) = E [2 yhr(sh, a,) | (89, ap) = (s, a), a, ~ 7(sy), 0.1 ~ PC- | s, ap)
h=0

|



Bellman Equation:

Vi(s) = [ lz yhr(sh, a,) | so =S, a, ~ 7(sy), .1 ~ P(- |5y, ah)]
h=0

Vﬂ(s) — _arv]z'(s) lr(sa Cl) + }/ _S’NP(.‘S,CZ)V]T(S,)]

O”"(s,a) = E [2 yhr(sh, a,) | (89, ap) = (s, a), a, ~ 7(sy), 0.1 ~ PC- | s, ap)
h=0

Q*(s,a) = r(s,a) + yEy _p. 5.0V ($)

|



Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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For infinite horizon discounted MDP, there exists a deterministic stationary policy
*
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[Puterman 94 chapter 6, also see theorem 1.7 in the RL monograph]
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Optimal Policy

For infinite horizon discounted MDP, there exists a deterministic stationary policy
*
7*: S A st, VP (s) > Vis),Vs, x

[Puterman 94 chapter 6, also see theorem 1.7 in the RL monograph]
* X Nk T*
We denote V™ :=V* , 0™ := QO

Theorem 1: Bellman Optimality
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Theorem 1: Bellman Optimality

V*(s) = max lr(s, a) + YEg pis.a)V )|, Vs

a

Denote 7(s) := arg max Q*(s, a), we will prove % (s) = V*(s), Vs

V*(S) — T(S, 71'*(5)) —+ 14 _S'NP(S,ﬂ*(S))V*(S,)
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= r(s, (s)) +y = s'~P(s,7(s)) | T (s',*(s) + 7 _s”NP(S’,ﬂ*(S’))V*(S )

< (s, 7(9)) + vEgops 700 | 708 T + YEgops 25y V(s ”)]



V*(s) = max

Proof of Bellman Optimalit
Theorem 1: Bellman Optimality

lr(sa Cl) TV _S’NP(-\S,a)V*(S/)

Vs

Denote 7(s) := arg max Q*(s, a), we will prove % (s) = V*(s), Vs

V*(s) = r(s, n*(s)) + v

< max [r(s, a)+vy

a

= r(s, 7(s)) +y

<r(s, m(s)+y

<r(s, w(s) +y

—s'~P(s,7(5))

—s'~P(s,7(5))

A

—s'~P(s,7%(5)) V*(S ,)
—s'~P(s,a) V*(S ,)

r(s’, *(S ) +y _s”NP(S’,Jr*(S’))V*(S ")

_r(s’, 7(s) +y

= 1(s, 7(5)) + YEyop(s. 259 V7 (5)

* (ol
_S”NP(S’,%\(S’))V (s )]

= P(s, 7 (s)) | 7S5 z(s) +v —s"~P(s, 7(s")) [’” (s", m(s") +y

S”/NP(S”, ;T\(S

) V* ( ¢ ///) |
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V*(s) = max lr(s, a) + YEy pj5.a)V ()

a

Vs

Denote 7(s) := arg max Q*(s, a), we will prove % (s) = V*(s), Vs

A

V*(S) — T(S, 71'*(5)) —+ 14 _S’NP(S,E*(S))V*(S,)

< max [F(S, Cl) + 14 _S'NP(S,CZ)V*(S,) — I”(S, ;T\(S)) + 4 _S'NP(S,E(S))V*(S/)

a

= 1(5, 7(9)) + VEgpis (s | 185 75(N) +7

S V(S, ;T\(S)) + }/ _S'NP(S,fz'\(S)) r(Sla ;T\(S,)) + }/
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* (ol
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= s'~P(s,7(s)) | T (s, m(s) +y
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Proof of Bellman Optimality

Theorem 1: Bellman Optimality

V*(s) = max |r(s,a) + yEg_p, S,a)V*(S/)]

Denote 7(s) := arg max Q™ (s, a), we just proved %4 (s) = V*(s), Vs
a

This implies that arg max Q*(s, a) is an optimal policy
a
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Forany V:§ — |

| V(s) = V*(s)| =

,if V(s) = max [r(s, a)+vy

Theorem 2:

then V(s) = V*(s), Vs

max(r(s,a) + vy
a

= op(s.ay) V() — max(r(s,a) +y

_S’NP(°‘S,CZ)V(S,)] for all s,

—s'~P(s,a) V*(S /))




Proof of Bellman Optimality

Forany V:§ — R, if V(s) = max |r(s,a) + vy

Theorem 2:

then V(s) = V*(s), Vs

| V(s) — V*(s)| = |max(r(s,a) +y

a

S max (r(Sa CZ) + 4 _S’NP(S,a)V(S,)) T (I"(S, Cl) T 4 _S’NP(S,CZ)V*(S,))

a

= op(s.ay) V() — max(r(s,a) +y

_S’NP(°‘S,CZ)V(S,)] for all s,

—s'~P(s5,0) V*(S /))




Proof of Bellman Optimality

Theorem 2:

Forany V:§ — R, if V(s) = max |r(s,a) + vy

then V(s) = V*(s), Vs

_S'NP(°‘S,CZ)V(S,)] for all s,

[ V(s) = V*(s)| = |max(r(s, @) + YEg. p(;,q) V(s)) — max(r(s, a) + yE;pi o)V (5)

a

<max |[(r(s,a) + vy

a

Cyp(s,a)V () = (r(s,a) +y

< maxy —s'~P(s,a) V(S ,) — V*(S /)

a

_S’NP(S,a) V*(S ,))
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Theorem 2:

Forany V: S — R, if V(s) = max |r(s,a) + }/_S'NP(-‘S,LZ)V(S,)] for all s,
then V(s) = V*(s), Vs

[ V(s) = V*(s)| = |max(r(s, @) + YEg. p(;,q) V(s)) — max(r(s, a) + yE;pi o)V (5)

a

S max (r(Sa CZ) + 4 _S’NP(S,a)V(S,)) T (I"(S, Cl) T 4 _S’NP(S,CZ)V*(S,))

a

V(s") — V*(s)

< max Y —s'~P(s,a)
a

V(s") = V*(s")] )

S maX }/ _S/NP(S,CZ) (ma,X }/ _S”NP(S,,CZ,)
a a




Proof of Bellman Optimality

Forany V:§ — R, if V(s) = max |r(s,a) + vy

| V(s) — V*(s)| = |max(r(s,a) +y

a

< max
da

< maxy
a

< maxy
a

< max yk

Theorem 2:

then V(s) = V*(s), Vs

(r(s,a) +v

—s'~P(s5,0)

a1,0y,. . .Ay_q

V(s") — V*(s)

_S’NP(S,CZ) (ma’X }/ _S”NP(S,,CZ,)

Cyp(s,a)V () = (r(s,a) +y

a

= | Vs = V(sp) |

'S'NP(-\s,a)V(S,)] for all s,

E oops.a)V(8) — max(r(s, a) + yE, . P(S,a)V*(s’))

_S’NP(S,a) V*(S /))

V(s") = V*(s"), )




Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Q: Assume we start at s, following 7 to the step h, what is the probability of generating a
trajectory © = {Sp, g, S1, Ays -5 Spy Apy } ?
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Trajectory distribution and state-action distribution

Q: Assume we start at s, following 7 to the step h, what is the probability of generating a
trajectory © = {Sp, g, S1, Ays -5 Spy Apy } ?

@ @ @ .. P(sp,ag, -, 8, ay)

= u(so)n(ay | so)P(sy | s, ag)(a | s))P(s, |51, ay)...P(s, | s,_1, a,_1)n(a, | s;,)

Q: what’s the probability of 7 visiting state (s,a) at time step h?

P (s, a) = Z P*(S0, Ay -5 Sp_15Ajy_1, S, = S, aj, = )

30:A0s51:UA 15+ - -5, 1441



Average State-Action occupancy measure

P7(s, a): probability of 7 visiting (s, a) at time step 7 € N

d*(s,a) = (1 =7) ), 7"Pi(s, a)
h=0



Average State-Action occupancy measure

P7(s, a): probability of 7 visiting (s, a) at time step 7 € N

d*(s,a) = (1 =7) ), 7"Pi(s, a)
h=0

SON#V”(SO) = — Z d”(s,a)r(s, a)



Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)



