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The very successful stories of ML are based on RL…
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Course staff introductions

• Instructors: : Kianté Brantley and Sham Kakade

•TFs: Lukas Fesser, Jaeyeon Kim, and Alex Meterez

•We will post Homework 0 today!

•We will make minor updates on the HW and post it on Ed.

•This should be a review;  
you should be familiar with the material to take the course.
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Course Overview

• We want u to obtain fundamental knowledge of RL.

• Grades: Participation; Reading; HW0 +HW1-HW3; Project 
• Readings: Readings will be assigned. It is important you do these and turn them 
in on time. They help with learning the material.


• HWs: HW is designed to target to many of the concepts in the class.

• Project: 3 people per project. It must be theoretical (fine to also have an 
empirical component).


• Bonus (5%):

All policies are stated on the course website:  
https://harvard-cs2824-s26.github.io/ 
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Enrollment/Auditing

• Priority will be given to PhD students + having appropriate pre-requisites.

• You needed to have filled out the form linked to on website for consideration.

• You also need to add yourself to the petition via the registrar enrollment. 

• You are welcome to audit/sit in on the course, though please give seats to the 
enrolled students (in case it is tight).


• Please hit “enroll” if you have been accepted in the course  
(so we have an accurate count to let more people in)


• Please drop if you know you will not take the course 
(so we can let others in)

• Please see HW0.
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Other Points

•Attendance: it is expected to attend and do the readings. 

•Communication: please use Ed to contact us

•Late policy (basically): you have  96 cumulative hours of late time.


•  Please use this to plan for unforeseen circumstances.
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Course Overview
• Fundamentals:

• Sample Complexity

• Tabular exploration (“UCB-VI”)

• Generalization:

• RL in “large” (of inf dim) state spaces.

• Upper bounds: What conditions lets us have guaranteed success. 

(e.g. Bellman rank)

• Lower bounds: Why are getting such conditions so difficult in RL? 

(say in comparison to SL)

• (Direct) Policy Optimization:


• Policy gradient methods are what work in practice. (why?)

• theory/practice of them


• Other topics: RLHF/LLMs, imitation learning.
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Basics of Markov Decision Processes



Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Markov Decision Process

Policy: determine action based on state

Multiple Steps

Send reward and next state from a 
Markovian transition dynamics

r(s, a), s′￼ ∼ P( ⋅ |s, a)

Learning 
Agent Environment

a ∼ π(s)

s0 ∼ μ0, a0 ∼ π(s0), r0, s1 ∼ P(s0, a0), a1 ∼ π(s1), r1…
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γ𝔼s′￼∼P(s,a) (max
a′￼

γ𝔼s′￼′￼∼P(s′￼,a′￼) V(s′￼′￼) − V⋆(s′￼′￼) )

Proof of Bellman Optimality



Theorem 2:

For any , if  for all , 

then 

V : S → ℝ V(s) = max
a [r(s, a) + γ𝔼s′￼∼P(⋅|s,a)V(s′￼)] s

V(s) = V⋆(s), ∀s

|V(s) − V⋆(s) | = max
a

(r(s, a) + γ𝔼s′￼∼P(s,a)V(s′￼)) − max
a

(r(s, a) + γ𝔼s′￼∼P(s,a)V⋆(s′￼))

≤ max
a

(r(s, a) + γ𝔼s′￼∼P(s,a)V(s′￼)) − (r(s, a) + γ𝔼s′￼∼P(s,a)V⋆(s′￼))

≤ max
a

γ𝔼s′￼∼P(s,a) V(s′￼) − V⋆(s′￼)

≤ max
a

γ𝔼s′￼∼P(s,a) (max
a′￼

γ𝔼s′￼′￼∼P(s′￼,a′￼) V(s′￼′￼) − V⋆(s′￼′￼) )
≤ max

a1,a2,…ak−1

γk𝔼sk
|V(sk) − V⋆(sk) |

Proof of Bellman Optimality



Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution



Trajectory distribution and state-action distribution

Q: Assume we start at , following  to the step h, what is the probability of generating a 
trajectory ?

s0 π
τ = {s0, a0, s1, a1, …, sh, ah}



Trajectory distribution and state-action distribution

Q: Assume we start at , following  to the step h, what is the probability of generating a 
trajectory ?

s0 π
τ = {s0, a0, s1, a1, …, sh, ah}

a1

s0 s1 s2

a0

…

…



Trajectory distribution and state-action distribution

Q: Assume we start at , following  to the step h, what is the probability of generating a 
trajectory ?

s0 π
τ = {s0, a0, s1, a1, …, sh, ah}

a1

s0 s1 s2

a0

…

… = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(s0, a0, …, sh, ah)



Trajectory distribution and state-action distribution

Q: Assume we start at , following  to the step h, what is the probability of generating a 
trajectory ?

s0 π
τ = {s0, a0, s1, a1, …, sh, ah}

a1

s0 s1 s2

a0

…

… = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(s0, a0, …, sh, ah)

Q: what’s the probability of  visiting state ( ,a) at time step h?π s



Trajectory distribution and state-action distribution

Q: Assume we start at , following  to the step h, what is the probability of generating a 
trajectory ?

s0 π
τ = {s0, a0, s1, a1, …, sh, ah}

a1

s0 s1 s2

a0

…

… = μ(s0)π(a0 |s0)P(s1 |s0, a0)π(a1 |s1)P(s2 |s1, a1)…P(sh |sh−1, ah−1)π(ah |sh)

ℙπ(s0, a0, …, sh, ah)

Q: what’s the probability of  visiting state ( ,a) at time step h?π s

ℙπ
h(s, a) = ∑

s0,a0,s1,a1,…,sh−1,ah−1

ℙπ(s0, a0, …, sh−1, ah−1, sh = s, ah = a)



Average State-Action occupancy measure

: probability of  visiting  at time step ℙπ
h(s, a) π (s, a) h ∈ ℕ

dπ(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
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Average State-Action occupancy measure

: probability of  visiting  at time step ℙπ
h(s, a) π (s, a) h ∈ ℕ

dπ(s, a) = (1 − γ)
∞

∑
h=0

γhℙπ
h(s, a)

𝔼s0∼μVπ(s0) =
1

1 − γ ∑
s,a

dπ(s, a)r(s, a)



Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)


