Planning in MDPs

Sham Kakade and Kianté Brantley

CS 2824: Foundations of Reinforcement Learning



Announcements

HWO is due Mon Feb. 2nd
First reading assignment due Wed. Feb 4th
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Recap: Inflnlte Horizon MDPs
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Recap: Bellman Optimality

M= 1{S,A,P,r,y}
P:SXAmrH AS), r:SxA-[0,1], ye]l0,l])

Theorem 1: Bellman Optimality (Q-version)

Q*(S, Cl) = I"(S, Cl) + y[ES’NP(°|S,(1) ln}eaj( Q*(S’, a/)]
a



Main Question for Today:

Given an MDP.Z = (S, A, P, r,y) , How to find 7* (stationary & deterministic)



Outline

1. Bellman optimality — property of V*

2. Optimal planning: Value lteration



Bellman Optimality

Theorem 2:

Forany V: S — R, if V(s) = max |r(s,a) + V[ES'NP(.|s,a)V(S’)‘ for all s,
then V(s) = V‘*(s),‘v’s
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Bellman Optimality

Theorem 2:
Forany V:§ — R, if V(s) = max |r(s,a) + V[ES'NP(-|s,a)V(S’)] for all s,
then V(s) = V*(s), Vs
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Bellman Optimality

Theorem 2:
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Bellman Optimality
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Bellman Optimality

Theorem 2:
Forany V:§ — R, if V(s) = max [r(s, a) + ylES'NP(-|S,a)V(S,)] for all s,
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¥y

max(r(s, a) + yEy._p o V(s)) — max(r(s,a) + yEg pi. o) V()

< max | (s, @ + 1B pis VD) = (15, 0) + 1By V5 ()

< max yEy _pgq | V() = V() |
a -

V(S//) _ V*(S//)

Sma)

< max yEy, pg.q <me}x YE g p(sar
a a

tete S Ti<ie g




Bellman Optimality

Theorem 2:
Forany V:§ — R, if V(s) = max [r(s, a) + ylES'NP(-|S,a)V(S,)] for all s,
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Bellman Optimality for O*

What about Q*?
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Bellman Optimality for O*

What about Q*?

We should have:

Forany O : S XA — R, if: r(s,a) + vEg p(is.a) maX
— e — 2 a’

for all s, then O(s, a) = O*(s,a), Vs, a




Outline

1. Bellman optimality — property of V*

2. Optimal planning: Value lteration



Define Bellman Operator TR

Given a functionf: S X A —» R, T4 ses M

Tf:SXA P R,

(s,a) =r(s,a)+yE, _p..omaxf(s,a’),Vs,ae S XA
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Define Bellman Operator & :

Given a functionf: S X A — R,
Tf:SxXA P R,

(f’ff) (s,a) = r(s,a) + yEy _p(|sqMmaxf(s,a’),Vs,a € SXA
T a'eA

(CW*] (sl = fsa) ~OR [ Mz:‘mﬁz“m'm‘)] = ¥ 04)
Q: whatis 7 0* ?



Value lteration Algorithm:

CQ‘5~14<"“ 2. f&fOtﬂ-)

t_
— Tyt
1. Initialization: Q° : ||QY||, €

2. Iterate until convergence: Q' = Q!
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Intuition:

Via Bellman optimality theorem:

Q* — L(;/"Q*
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Intuition:

Via Bellman optimality theorem:
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i.e., O™ is the fixed point solution of f = T f 2: 0~ R

Consider the simple problem: finding fixed point solution x* = f(x*)



Intuition:

Via Bellman optimality theorem:

Q* — Lc/"Q*
i.e., O™ is the fixed point solution of f = T f

Consider the simple problem: finding fixed point solution x* = f(x*)
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Intuition:

Via Bellman optimality theorem:

Q* — L(;/"Q*
i.e., O™ is the fixed point solution of f = T f

Consider the simple problem: finding fixed point solution x* = £(x*)

Xop Xy = C(x),t=0,...,
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Intuition:

Via Bellman optimality theorem:

Q* — Lc/"Q*
i.e., O™ is the fixed point solution of f = T f

Consider the simple problem: finding fixed point solution x* = f(x*)

ﬂ‘..u;\\ X0 X1 = f(xt)’ = O,...,

|xz_/)_C*| — |Z’ﬂ(xt—1) — K(X*”
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Intuition:

Via Bellman optimality theorem:

Q* — Lc/"Q*
i.e., O™ is the fixed point solution of f = T f

Consider the simple problem: finding fixed point solution x* = f(x*)

Xop Xy = C(x),t=0,...,

X = x*| = | £0,) — £G)| §@| X —x*



Intuition:

Via Bellman optimality theorem:
0*=90*
i.e., O™ is the fixed point solution of f = T f
Consider the simple problem: finding fixed point solution x* = Z(x*)
Xop Xy = C(x),t=0,...,

X, —x*| = |£0 ) = 6*) | < L|x_ —x*| & L= e —r*1
! 1—1 S |1

—_— =,

If L < 1 (i.e., contraction), then it converges exponentially fast
(-_&



Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q’, we have:
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Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q’, we have:

|1 T0—-T0N, =70 -0l
Proof:
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Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q’, we have:

170 =T QN =70 - Q'

Proof:

(5,0 + fE,pynax 0(s' ) - <r<s, Q) +ax 0, a'>) ‘
s’yz P(s’| s, a% <m2/1x O(s’,a’) — max Q'(s’, a’)) ‘

| T0(s,a) =T Q(s,a)| =




Convergence of Value Iteration:
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Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q’, we have:

|1 T0—-T0N, =70 -0l
Proof:
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Convergence of Value Iteration:

Lemma [contraction]: Given any Q, Q’, we have:

|1 T0—-T0N, =70 -0l
Proof:

| T0(s,a) =T Q(s,a)| =

r(s,a) + YEy pia max Q(s’,a’) — <r(S, a) + vEg pes.a max Q'(s’, a’)> ‘
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< yz P(s'| s, a) <maa}x O(s',a’) — maE}X Q'(s, a')) ‘
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Convergence of Value lteration:

Lemma [Convergence]: Given QO, we have:

10" = 0™l < 7I0° = O™l

Proof:



Convergence of Value lteration:

Lemma [Convergence]: Given QO, we have:

10" = 0™l < 7I0° = O™l
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10" = 0™l = 170" = T O™l < 70" - 0%l
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Convergence of Value lteration:

Lemma [Convergence]: Given QO, we have:

10L= 0™l < 7I0° = 0%l

Proof:

IdED— 0%l = 170" = TO*. < /110" = O™,
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Final Quality of the Policy: & s oty
a
r': 7'(s) = argmax Q'(s, a) Trt: argment L0
“ 2 t q
Y
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Proof:

Theorem: V”t(s) > V*(s) —
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Final Quality of the Policy:
r': 7'(s) = argmax Q'(s, a)
a 2
1 -y
Proof:

Theorem: V" (s) > V*(s) — 10° — 0*|| Vs €S

<\ Eﬂ'
VE(s) = VX(5) = 0%(s, 2'(s)) — 0*(5, 7*(5))
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Final Quality of the Policy:
r': 7'(s) = argmax Q'(s, a)
a 2
1 -y
Proof:

VZ(s) — V*(s) = Q7 (s, 7'(s)) — Q*(s, n*<s3r>/
= Q0" (s, #'(s)) —|Q*(s5, 7'(s)) + O*(s, nf(s))} O*(s, 7%(s))
—pr N

Theorem: VEZ(S) > V*(s) — 10° — o*|l. Vs €S




Final Quality of the Policy:

r': 7'(s) = argmax Q'(s, a)

Theorem: V" (s) > V*(s) — - Q0" Vs €S
Proof:
V7 (s) — V*(s) = Q" (s, 2'(s)) — Q*(s, 7*(5))
Dmie S

= Q" (s, ﬂ!t(S)) O (s, ZI(S ) + Q*(s, 7'(s)) — Q*(s, 7*(s))
= 7E oo (VF) = VA ) + Q45 (6) — 0*(5.74(9)
— ———
Skife !
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r': 7'(s) = argmax Q'(s, a) 7z _ <
t - i]/t - \~b/ 4
Theorem: V" (s) > V*(s) — " 10° - 0*|| VsE€S = - <
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| | Proof: W - mygnenk G 05169
VE(s) = V*(s) = Q% (s, 7'(s5)) — Q*(s, 7*(5)) a

' * t * t * * q*s )
= 075, 7(s)) = Q*(5, 7(5)) + Q*(s. 7(5)) — O*(s5, 7*(5)) S s i
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OV ooy (VE6) = V() ) + 0G5, 7(5) 05, 7)) + 05, () |- 0¥ (6,7 (9))
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Final Quality of the Policy:
7' : 7'(s) = argmax Q'(s, a)
a 2
1 -y
Proof:

Vo (s) = V*(s) = Q™ (s, 7'(5)) — Q*(s, 7%(s))

e
= Q" (s, 7(5)) — Q*(s5, 7'(5)) + Q* (s, 7(5)) — Q*(5, 7*(5))
= 7By pismin (VF(5) = VF(5) ) + 06, 7)) = 0*(s, 7*(5)

Theorem: V7 (s) > V*(s) — 10° — O*||. Vs €S

> VE - pieaioy (V6D = V() ) + 0G5, 7(5)) = Qs 7(9) + Q5. 7%(5) = Q6,7 (9))

2 Vi (VE6) = VA6 ) = 27100 - 071l
. E—



Final Quality of the Policy:
7' : 7'(s) = argmax Q'(s, a)
a 27/[
-y
t t Proof:
VE(s) = V*(s) = Q% (s, 7'(s5)) — Q*(s, 7*(5))
= Q7 (s, 7'(s)) — Q*(s5, 7'(5)) + Q*(s, 7'(s)) — Q*(5, 7*(s))
= Yy p(sn(s)) (V”I(S’) - V*(S’)> + Q*(s, 7'(s)) — Q™ (s, 7*(5))

Theorem: V7 (s) > V*(s) — 10° — O*||. Vs €S

> VB pioion (V76 = VA ) + Q¥(5, 7(5)) = Q1G5 7(5) + 015, 7%()) = Q*(5, 7*(5))

> VEpioioy (V6D = V() ) = 271Q° = 0*l, ---Recursion



Outline

1. Bellman optimality — property of V*

2. Optimal planning: Value Iteration

3. State-action distribution



Trajectory distribution and state-action distribution

Q: what is the probability of 7 generating trajectory = = {5, dg, S, A5 -5 S, A1} ?
g = 1Cs) T -
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Trajectory distribution and state-action distribution

Q: what is the probablllty of & generating trajectory 7 = {5y, Gg, S1, Q15 - -+ Sy, Ay, } ?
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Trajectory distribution and state-action distribution

Q: what is the probability of 7 generating trajectory = = {5, dg, S, A5 -5 S, A1} ?

{)CQ ?or@o
a a P*(sg, ags - --» Sp» ap,)
el

Tl'(%l? . = /4(50)71'(30 | SO)P(S1 |So, ag)m(a, |S1)P(Sz | S, ayp)...P(sy, | Sp—1> ap_7(ay, | Sp)



Trajectory distribution and state-action distribution

Q: what is the probability of 7 generating trajectory = = {5, dg, S, A5 -5 S, A1} ?

[I:D (So, ao, .o Sh, ah)

e — /4(50)77(610|S())P(S1 |So, ao)ﬂ(ch |S1)P(Sz|51,a1) P(Sh|5h 1> Ap— 1)71'(ah|5h)

pLAB) Ploh=a)= ‘;SVCAWI”:’-"?)

Q: what’s the probability of 7 visiting state (s,a) at time step h?



Trajectory distribution and state-action distribution

Q: what is the probability of 7 generating trajectory = = {5, dg, S, A5 -5 S, A1} ?

[I:D (So, ao, .o Sh, ah)

e — /4(50)77(610|S())P(S1 |So, ao)ﬂ(fh |S1)P(Sz|51,a1) P(Sh|Sh 1> Ap— 1)71'(ah|5h)

Q: what’s the probability of 7 visiting state (s,a) at time step h?

P (s, a7) = Z P*(sg, Ags -+ -» Sp—1> App_1> Sy, = S, aj, = Q)

R
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So,ao,sl,al, .o ,sh_l,ah_l
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Averaged state action occupancy measure

P7(s, a): probability of z visiting (s, a) at time step 7 € N

d(s,a) = (1 =) ), Y'Pi(s, a)
h=0
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47(s)=C

Averaged state action occupancy measure
\(\@}{ ?(9\ JL () = (\X\i*ﬁf?@ S?)(j [5>

P7(s, a): probability of 7 visiting (s, a) at time step heN

d"(s,a) = (1 =) ), 7"Pj(s.a)
h=0 V/ g |

1
E,, -,V (sp) = Fp Y d(s.a)r(s,a)



Summary for today

Planning algorithm (no learning so far):

VI: fixed point iteration Q! = Q!

1. Bellman operator is a contraction map

2. ||0" — O*||, being small implies V* & V* are close



