Introduction and Basics of
Markov Decision Process

CS 2824: Foundations of Reinforcement Learning



The very successful stories of ML are based on RL...

\rlr— 1(1:;{[1
bt]p(pl\

ALL SYSTEMS GO

TD GAMMON [Tesauro 95] [AlphaZero, Silver et.al, 17] [OpenAI Five, 18]
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RL in Real World: Coding Assistant

this code is not working like i expect — how do i fix it?

resultiWorkerErr :=
resultWorkerErr

resultWorkerErr <- b

<-resultWorkerErr

multierror err, <-resultWorkerErr

It's difficult to say what's wrong with the code without more context. Can you provide
more information about what the code is supposed to do and what isn't working as
expected? Also, is this the entire code or just a part of it?

just part of it — the error never surfaces. I think there is something wrong with
the channel

It's difficult to say without more information about what the code is supposed to do
and what's happening when it's executed. One potential issue with the code you
provided is that the resultWorkererr channel is never closed, which means that the
code could potentially hang if the resultwWorkerErr channel is never written to. This
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Next Monday and Tuesday are not great for me. On
Mondays, | have lab meetings and a research meeting
around lunchtime. On Tuesday, | will be teaching a course
during roughly the same time. Perhaps we can reconnect
when you return on 11/29.

Monday and Tuesday are typically not great for me.-On
Moendays;| have lab-meetings-and; research meetings.-On
Tuesday, I will be teaching and teach a course during
roughly-the-same-time around lunchtime. Perhaps we can

reconnect when you return on 11/29.




RL in Real World:
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Course staff introductions

* Instructors: : Kianté Brantley and Sham Kakade
* TFs: Lukas Fesser, Jaeyeon Kim, and Alex Meterez

* We will make minor updates on the HW and post it on Ed.

 This should be a review;
you should be familiar with the material to take the course.



Course Overview

All policies are stated on the course website:
https://harvard-cs2824-s26.github.io/

» We want u to obtain fundamental knowledge of RL.
- Grades: Participation; Reading; HWO0 +HW1-HW3; Project

« Readings: Readings will be assigned. It is important you do these and turn them
in on time. They help with learning the material.

- HWs: HW is designed to target to many of the concepts in the class.

- Project: 3 people per project. It must be theoretical (fine to also have an
empirical component).

* Bonus (5%):



Enrollment/Auditing

* Priority will be given to PhD students + having appropriate pre-requisites.

* You are welcome to audit/sit in on the course, though please give seats to the
enrolled students (in case it is tight).

* Please hit “enroll” if you have been accepted in the course
(so we have an accurate count to let more people in)

* Please drop if you know you will not take the course
(so we can let others in)

* Please see HWO.



Other Points

. it is expected to attend and do the readings.

- Communication: please use Ed to contact us

- Late policy (basically): you have 96 cumulative hours of late time.
 Please use this to plan for unforeseen circumstances.



Course QOverview

* Fundamentals:
- Sample Complexity
« Tabular exploration (“UCB-VI”)
» Generalization:
« RL in “large” (of inf dim) state spaces.

+ Upper bounds: What conditions lets us have guaranteed success.
(e.g. Bellman rank)

« Lower bounds: Why are getting such conditions so difficult in RL?
(say in comparison to SL)

* (Direct) Policy Optimization:
» Policy gradient methods are what work in practice. (why?)
- theory/practice of them

+ Other topics: RLHF/LLMs, imitation learning.



Basics of Markov Decision Processes



Outline

1. Definition of infinite horizon discounted MDPs

2. Bellman Optimality

3. State-action distribution
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Markov Decision Process

Learning
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Infinite horizon Discounted MDP

M= {S,A,P,r,py, v}
P:SxXA— A(S), r:SxA-[0,1], yel0,1)

Policy #: S » A(A)

Value function V*(s) = E [Z v (s,, ay) ‘ So = S, ay, ~ 7(Sy), Sy ~ P |5y, ah)]
h=0
Q function Q*(s,a) = E [Z Vh”(sh, a) ‘ (EQ’fQ_) = (s, a), aj ~ 7(sp), Spyy ~ PC- |5y ah)]

- '8
h=0 A AN
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h=0
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h=0

Q"(s,a) = r(s,a) + YEg p 5.0V (5)
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Trajectory distribution and state-action distribution

Q: Assume we start at s, following 7z to the step h, what is the probability of generating a
trajectory T = {So, ao, Sl’ al, cees Sh’ Clh}?

[I:D (So, ao, .o Sh, ah)

e — /4(50)77(610|S())P(S1 |So, ao)ﬂ(fh |S1)P(Sz|51,a1) P(Sh|Sh 1> Ap— 1)71'(ah|5h)

Q: what’s the probability of 7 visiting state (s,a) at time step h?

P7(s, a) = Z P*(sg, Ags -+ -» Sp—1> App_1> Sy, = S, aj, = Q)

5050051515~ - - 5Sh_ 151
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Average State-Action occupancy measure

P7(s, a): probability of z visiting (s, a) at time step 7 € N

d(s,a) = (1 =) ), Y'Pi(s, a)
h=0

1
Es V00 = 7 Y d(s.a)r(s,a)



Summary for today

Key definitions: MDPs, Value / Q functions, State-action distribution

Key property: Bellman optimality (the two theorems and their proofs)



